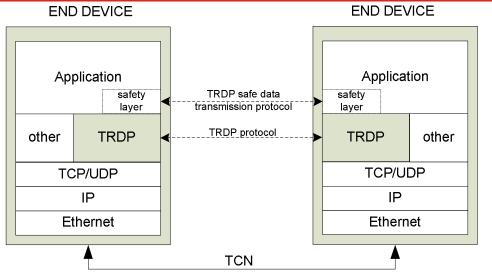
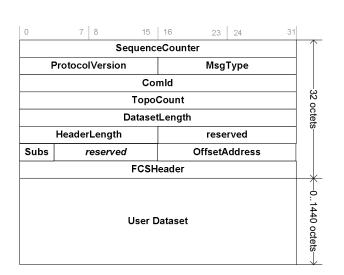


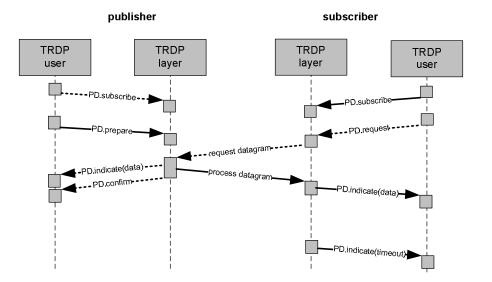
Dr.-Ing. Uwe Kucharzyk, Armin-Hagen Weiss CENELEC / ACRI Workshop, Prague, Oct. 20 – 21, 2011


BOMBARDIER

Content

- Background
- Main characteristics
- Process Data
- Message Data
- Safe Data Transmission
- Operating experience
- IP usage for TCMS in BT projects
- Conclusions


- Increasing amount of requested services on-board for TIS
- Need for IP based real-time data protocol for railways supporting dynamic topology changes of train topology
- Base standard IP technology to use and connect off the shelf products
- TRDP definition fulfils functional requirements of Bombardier, Siemens, FAR Systems, TOSHIBA, MITSUBISHI, HITACHI and West Japan Rail.


- Small footprint
- UDP based
- TCP MD possible
- Ladder topology support
- Optional SDT support
- Transparent redundancy support
- Trainwide PD and MD support
- Fully defined in IEC61375-2-3
- Open source
- Easy to implement
- Successor of IPTCom

TRDP Process Data – Main Characteristics

- sent with UDP
- restricted to the size of one Ethernet frame
- Uses IEC reserved TRDP PD port number
- Not acknowledged
- Cycle times >= 1ms
- Push (___) and pull (___ , ...) pattern support (pull new)

Bombardier Inc. or its subsidiaries. All rights reserved

its subsidiaries. All rights reserved.

TRDP Process Data - Patterns

Push pattern

- point to point (sink known)
- point to multipoint (sink known group address)
- point to multipoint (sink unknown)

Pull pattern

- point to point (source known)
- point to point (source unknown)
- Point to multipoint (source known)
- Point to multipoint (source unknown)

Description of the subsidiaries. All rights reserved

TRDP Message Data – Main Characteristics

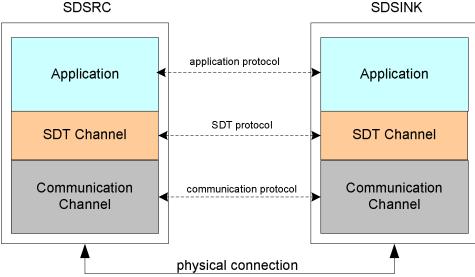
- may be sent with UDP or with TCP. The choice shall be done by the user when the message data transfer is invoked.
- Max user data length
 - UDP: 65200 bytes
 - TCP: 2³²- (256+TCPOverhead) bytes (new)
- Uses IEC reserved port number for TRDP MD
- No retransmission but confirm (new)
- Communication types
 - Notification (only request)
 - Request Reply
 - Request Reply Confirm (new in comparison to IPTCom) (new)
- Push and pull pattern support

TRDP Message Data - Protocol

© Bombardier Inc. or its subsidiaries. All rights reserved.

TRDP Message Data - Patterns

Push pattern


- point to point, sporadic with acknowledge, source knows the sink
- point to point, sporadic without acknowledge, source knows the sink
- point to multipoint, sporadic with acknowledge, source knows the sink
- point to multipoint, sporadic without acknowledge, source knows the sink
- point to multipoint, sporadic with acknowledge, source does not know the sink
- point to multipoint, sporadic without acknowledge, source does not know the sink

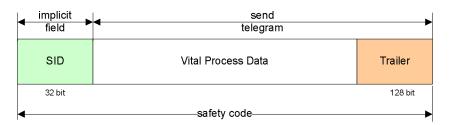
Pull pattern

- point to point, sporadic with acknowledge, sink knows the source
- point to point, sporadic without acknowledge, sink knows the source
- point to multipoint, sporadic with acknowledge, sink knows the source
- point to multipoint, sporadic without acknowledge, sink knows the source
- point to multipoint, sporadic on first acknowledge, sink does not know the source
- point to multipoint, sporadic without acknowledge, sink does not know the source

TRDP Safe Data Transmission - Basics

- **SDT** supports the transmission of safety related data between a safe data source (SDSRC) and one or many safe data sinks (SDSINK)
- SDT is an end-to-end protocol over an untrusted communication channel (grey channel)
- The SDT layer provides two interfaces
 - Application interface
 - Protocol interface

BOMBARDIER


TRDP Safe Data Transmission – VPD Telegram

Safety is proven by

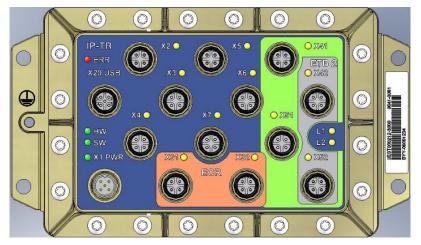
- Safety code check
- Protocol version check
- Sequence check
- Guard time violation check
- Latency monitoring check
- User data version check
- Channel monitoring check

SID content:

Safety Message Identifier (SMI) SDT Protocol Version (SDTProtVers) Unique Consist Identifier (ConsistId) Safe Topography Counter (STC)

Trailer content:

User Data Version Safe Sequence Counter Safety Code (32 bit CRC)

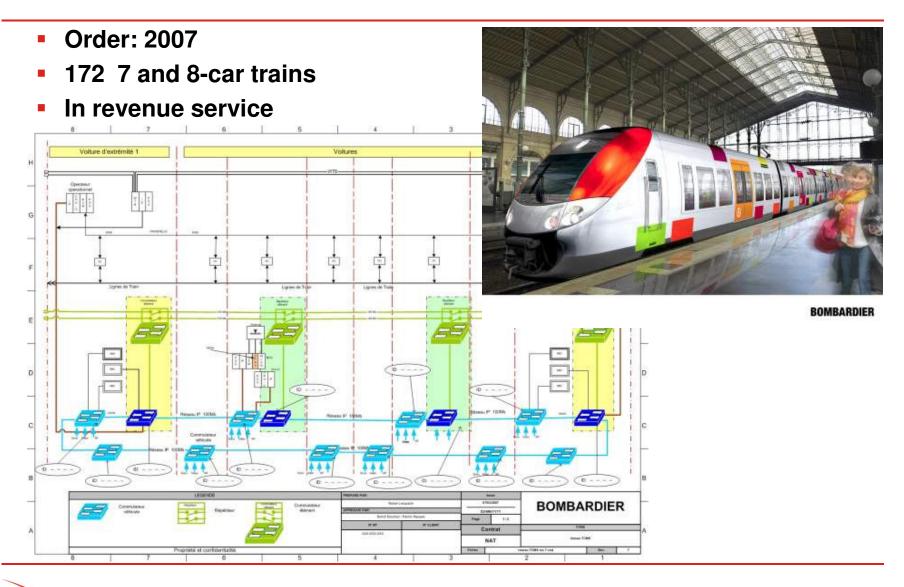

IP Network use for TCMS in BT projects

Start development: 2006

Start project use: 2008

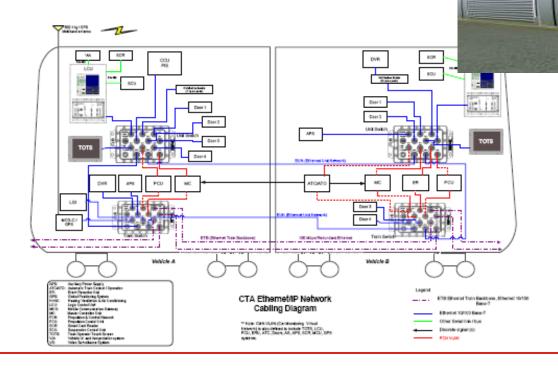
- Now more than 20 projects world wide are using ECN/ETB for TCMS
- IPTCom open source licenses were granted to 50 companies
- Until now in total
 - ~ 5.100 intelligent switches (12- and 8-port ring switches and train switches) have been used in the TCMS network of BT projects →
 - ~ 30 000 ED connected
- yearly about 3300

 intelligent switches
 to be delivered
 to the vehicle projects

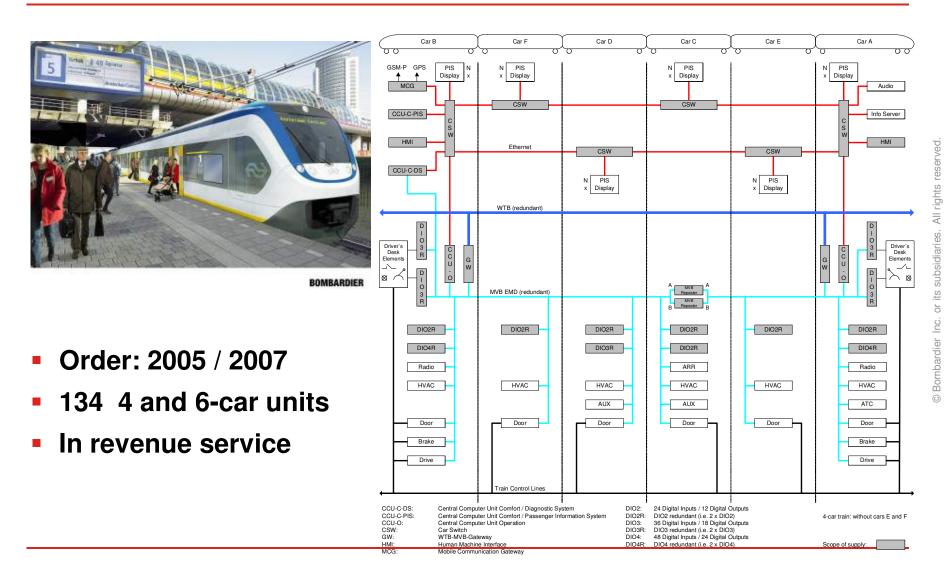


front view of a train switch

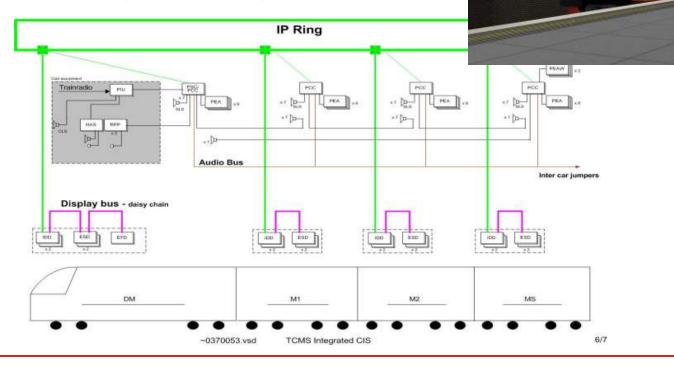
IP Network Operating Experience – Major IPTCom Projects


In service	ECN	ETB	consists switches/consist	
Chicago (CTA)* (1 year 8 cars)	X	X	4	4
Dehli Metro 2	X	Χ	40	14
NAT (SNCF)	X	Χ	172	18
SLT (NS)	X	-	134	6-8
SSL (London Underground)	X	Χ	190	9-10
BR 422 (DB)	X	-	84	6
Toronto Rocket (TTC)	X	-	70	10
In commissioning				
Chicago (CTA) (serial delivery)	X	X	353	4
TALENT (DB)	X	(x)	321	4-8
DT5 Hamburg (HH)	X	Χ	27	6
Singapore (SDTL)	X	-	219	8
Under development				
ZEFIRO Italy	X	X	50	19
Regio2N (SNCF)	X	X	129	18-22
TWINDEXX (SBB)	X	X	59	12
DO 2010 (DB)	X	X	27	14
BR430 Stuttgart (DB)	X	X	83	6
Metro Montreal	X	-	60	18

NAT / SNCF



Chicago Transit Authorities / U.S.A.

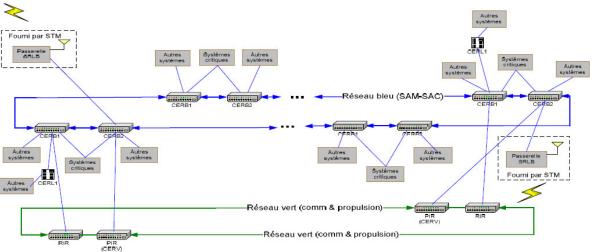

- Order July 2006
- 353 * 2-car units
- 2009-10 8 cars in revenue operation
- 2011 start of serial delivery

Sprinter Lighttrain / NS Reizigers

- 58 * 8-car trains, 133 * 7-car trains
- Delivery:
 - Pre-Series Q1 2009
 - Series Q2 2010
 - 42 trains in revenue service

Toronto (TTC) Rocket

- 70 Metros, 6-car consist
- First trains in service
- Along with CTA, first BT project with propulsion commands through IP
- no WTB or Trainlines for propulsion



Metro Montreal

- 52 Metros, 9-car consist
- Consortium Alstom Transport and Bombardier Transportation
- Contract: 2010
- Prototype: 2013
- Serial delivery 2014 2018

Conclusions

- TRDP based on standard IP-technology
- Considers railway specific requirements of WG43
- Supports dynamic train configuration
- Implements safe data transmission
- Predecessor implementation is proven in use

Thank you for your attention